Stanislavski and Computer Science

William J. Klinger

Computer Science Department

Raritan Valley Community College

North Branch, NJ 08876 - 1265 USA

wklinger@raritanval.edu
Abstract

Computer science concepts can be difficult for new students to fully grasp. As educators, we look for ways to give our students not only an understanding of a concept but also insight. In the acting profession, actors face a similar situation where they need to understand their characters in depth. The method of having an actor “become” a character is one that can also be applied to computer science education. This paper explores the method of having computer science students “become” a concept and act out their roles. This method has been very effective in helping students gain insights into computer science concepts.

Keywords: Computer science education, active learning, personification
1. Introduction

“Be an old oak tree.” That is the instruction given by the director of a play to one of his student actors in Constantin Stanislavski’s book An Actor Prepares [5]. The student is told to understand what it is to be an old oak tree. What does it see? What does it do? What happens if there is a fire? The method is used to help actors gain insights into their characters and truly understand what they are about. When an actor “becomes” their character, they can act and react in ways the true character might.

As computer science educators, we often search for ways to give students insights into computer science concepts that will permit them to understand the behaviors of the concepts in action. We often struggle to find ways to teach a topic or concept that will create the “Aha!” moment for our students. This is particularly true in introductory courses where students may not have a foundation of knowledge to build upon and extrapolate. Computer science concepts can be particularly troublesome for students because the students rarely have any experiential base to build upon.

One common approach used to help students visualize concepts is to create an applet or simulator that graphically shows the concepts in action. Examples of this approach include showing pictures of the effects of data structure operations [1] and graphically showing a bubble sort [2]. Graphical representations of operations can be a powerful learning tool. Some concepts, however, are difficult to show graphically or students may not grasp a concept even if it is introduced graphically. In addition, such methods suffer from the fact that they are passive and rely upon the initiative of the student. It is easy for us as computer science instructors to be tempted to throw technology at the problem but other methods can also be effective.

Personifying concepts is a teaching method that gives students a base of understanding and allows them to quickly move to gain insights. Personification is an example of active learning [4]. Students are instructed to “become” the concept and experience it first-hand. In this paper, I will describe the personification approach and give several examples of its application.

2. The Approach

Constantin Stanislavski wrote, “Every invention of the actor’s imagination must be thoroughly worked out and solidly built on a basis of facts. It must be able to answer all the questions (when, where, why, how) that he asks himself when he is driving his inventive faculties on to make a more and more definite picture of a make-believe existence.” [5] Stanislavski wanted actors to understand their roles, to know what their characters knew, to act and react as their characters would.

An analogous method can be applied to computer science. If we substitute “programmer” for “actor” in Stanislavski’s statement, we have exactly the sort of thing we ask our computer science programmers to do when they “invent” a new class in Object-Oriented programming. We want our students to understand what an object must know (its members) and to know how an object will act and react (its methods).

The idea of becoming or acting a concept is not new. Kris Powers described an active learning approach to introducing computer architectures using a “Living CPU” lab exercise where students perform the actions of a CPU [3]. By acting the part of a CPU, students gained a deeper understanding of the components of a computer, what they do, and why.

This approach can be generalized to asking students to become a concept being introduced, just as an actor or actress might become their character. The instructor can then ask the students questions such as, “What information do you need?” “How did you perform that action?” “Why did you take that action?” or “What happens if …?”

In some cases, it is beneficial to have the students act out roles that are analogous to the concept being introduced. Using an analogy can often help the students relate an abstract concept to something they are already familiar with. For example, the analogy of water flowing through pipes is often used to teach beginning electrical concepts. As we will see in the following examples, there are a wide variety of concepts where students can be called upon to act out their parts and experience a concept first-hand.

3. Process Scheduling Example

Suppose we want to introduce the concept of scheduling processes. We want students to understand scheduling algorithms and their impact on throughput and other performance characteristics. To personify this, we will ask the students to become processes.

In order to have something students can relate to, select ten students (there is nothing magical about using ten students) from the class and tell them that they have come into a fast food restaurant to buy hamburgers. Each student is given a sheet of paper with a large number written on it that signifies the number of hamburgers they are to purchase. The numbers range from 0 to 25. The paper is used so they don’t forget their order and so that all students can see how many burgers each student is buying.

The students are told they must wait in a line. When they get to the front of the line, you will make hamburgers for them. This is not really a fast food restaurant, merely a teacher flipping burgers as a side job and so you tell them you can only make one burger at a time and it takes one minute to cook a burger. For example, when a student who wants 10 hamburgers gets to the front of the line, you will cook him or her one burger a minute and they will get their order filled in 10 minutes.

The first time you do the exercise, start with a First Come First Served, FCFS, scenario. Call the ten students forward, have them get in a line, and give them their order amount. You should purposely have the large, 25 burger order near the front of the line with some small orders at the end of the line. Each student in line is asked to keep track of how long they waited in line and the total time they were in the restaurant (this is a take-out only establishment and they must leave once they have all their burgers). Students observing are asked to keep totals and calculate the average time a customer is in the restaurant.

After doing the FCFS scenario, verify the individual and average turnaround times. Ask the students who started in the back of the line how they felt about having to wait behind the large order. They will often come up with the suggestion of serving the small orders first. Do the exercise again, this time putting them in line sorted with the smallest order first. This simulates the Shortest Job First algorithm, SJF.

Again, calculate the average turnaround time. Then ask the student with the large order if there might be any problems with the SJF approach. If necessary, ask what happens if new customers with small orders continually enter the restaurant. They will quickly see the concept of process starvation. After some reflection and discussion, some student may suggest a round robin approach. Then run the exercise with you giving out burgers one at a time to each student in line. The students will need to keep track of how much of their order has been filled.

The analogy should be obvious, each student is a process, the number of burgers is the amount of CPU time their process requires, the line is the scheduling queue, and you are the CPU. Their time in the restaurant is the turnaround time. It is not necessary to talk about processes and scheduling before the exercise but after the exercise, students will immediately get the connection.

Another aspect of process scheduling that can give students difficulty is coping with arrival times when calculating turnaround times. This is a simple extension to the exercises. Students enter the restaurant at different times and keep track of when they enter as well as when they leave.

This personification of process scheduling has been very effective in classes. Students often think of novel approaches to scheduling and couch them in hamburger terms. It is also the case that some of them tell me they can not help but think about operating systems when they stand in line at a fast food restaurant.

4. Multi-Processing Example

The need for cooperation between processes is a concept that initially gives many students difficulty. They have difficulty understanding how processes can interfere. To them, a program is an indivisible unit. To illustrate this and motivate process synchronization, we assume that each process is running on a separate CPU. In this exercise, one student in the class is assigned the role of representing a shared memory address. The person should be given an initial value of zero on a piece of paper. This person will keep track of their current value on this sheet.

The remainder of the students can be put into teams of two persons each. One student on each team will play the role of CPU and the other person will represent memory access. The program each CPU will run is the simple loop:

for(i=0; i<3; i++)

sharedVar = sharedVar + 1;

The memory access member of the group goes back and forth between their CPU and the shared memory. The memory access member may either retrieve the value that the shared memory person gives them or may give the shared memory person a new value but not both.

When the exercise begins, the memory access members of each team will go to the shared memory person to retrieve the current value of sharedVar. The first thing the students will see is that they must get in line; the shared memory can only accommodate one request at a time. When a memory access person gets a value, they will go back to their CPU member with the value. The CPU will add one to that value and instruct the memory access person to update the shared memory with the new value. The memory access member then goes to the shared memory and gives it a new value. The shared memory person writes this new number down on their paper and when asked for its current value will give out the new number. This continues until all processes have done their three iterations and additions.

All the students in the class will understand that they will add one three times to the shared variable their result should be three. If there are five teams, the intuitive result to many will be 15. They will be surprised that this is not necessarily the final value of the shared value. You might want to run the exercise again, this time delaying the start of one or more CPU teams.

Now ask the students what range of final values the shared variable might take on. What would determine the final value? Ask them what rules they should use to ensure that the intended result, for example 15, is obtained. Students often give creative answers, including the ideas of either locking the memory or synchronizing their activities, although they may not use those terms. You can then re-run the exercise using their suggestions and comparing the results. This approach also gives some insight into processor wait times and the problems of scaling with multiple processors. As an aside, an English professor observed my class during this exercise and was still talking about process synchronization weeks later.

5. Deadlocks

Deadlocks can be demonstrated simply by selecting some number of students, say three, to act as processes. Then take three objects, such as different colored markers, to serve as resources. Give one marker to each student, and tell them to write their name using two markers at the same time and that they each must use a specific marker held by another person in order to complete their work. Perhaps the first time you run the exercise, do not have a circular wait. Have them discuss whether the students could complete their work.

Then introduce a circular wait and ask them if they can complete their work. Why is the group deadlocked? The group can easily visualize and discuss the reasons for the deadlock. The class can also discuss strategies to avoid, prevent, and handle deadlocks. Keep track of the ideas they come up with, such as only using one marker at a time or giving up a marker if they cannot get the second one. Discuss why these strategies might work. Finally, discuss the general topic of deadlocks and show how their marker strategies relate to the topic.

6. Objects

Personifying objects can be very helpful to new programmers. For example, the concept of a combination lock is simple and familiar. However, translating that into a program class can be big a challenge for new programmers.

To personify a lock, tell the students they are to pretend they are a lock. Ask them questions and have them respond in the context of being a lock. What do they, as a lock, need to remember? For a lock, an obvious thing to remember would be the combination. When they think about it more, they might realize that they need the state of the tumblers and the direction the dial was turned last. Write their responses on the board. This information becomes the members of the class. If the students don’t come up with all the information needed, proceed to the next step. Discussing the operations of the lock will help identify these items. It will also show that design is an iterative process.

Next, ask them what operations might be performed on them. What can someone do to them? Again, write these on the board. The things that someone can do, such as spin the dial and pull on the lock, become the class methods.

Then discuss how they operate as a lock and again ask them questions. What happens to them when they are turned to the correct first combination number but then to an incorrect number? What happens if they are given the first two numbers correctly and then the third number is incorrect but is the correct first number? Their operation should give some insight into the internal methods and algorithms required by a lock class. Here is where students may identify more things they need to remember as a lock and identify the methods and members needed for the object.

7. Summary

Personification and acting out computer science concepts can be a powerful teaching technique. Not only does personification help students visualize concepts but students experience them. This active learning technique has enabled students to quickly grasp new concepts and gain insights that they otherwise might not have gotten. It also makes a class more interesting and fun. Moreover, if a student visits a fast food restaurant or grocery store and thinks about process scheduling, we have gained a computer scientist.

References

[1]
Golub, E. Binary Tree Algorithms, http://www.cs.umd.edu/~egolub/Java/BinaryTree.html, (Referenced June 12, 2005).

[2]
Mukundan, R. Bubble Sort Algorithm, http://www.cosc.canterbury.ac.nz/people/mukundan/dsal/BSort.html, (Referenced June 12, 2005).

[3]
Powers, Kris D. Teaching Computer Architecture in Introductory Computing: Why? and How?, Conferences in Research and Practice in Information Technology, Vol. 30., R. Lister and A. Young Ed., 2004.

[4]
Silberman, Mel. Active Learning: 101 Strategies to Teach Any Subject, Allyn and Bacon, Boston, MA, 1996.

[5]
Stanislavski, Constantin. An Actor Prepares, 38th Edition, Theatre Arts Books, New York, 1984.

